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Abstract--The question of the theological effects of non-Newton)an fluids on some non-isothermal flo~s 
through a porous medium is addressed. These effects are illustrated on the temperature and pressure 
distributions for the case of a power law fluid with a yield stress, in which the yield stress is temperature 
dependent. The steady state solutions for the radial flow are analytically obtained. The temperature effect 
on the pressure distributions is graphically illustrated. The unsteady state solutions for one-dimensional 
flow, in which non-Newton)an behavior is of power law only and rheological parameters are temperature 
independent, are also obtained. These solutions determine the pressure and temperature distributions when 
the basic equations are decoupled and the fluid flow occurs due to the decompression mechanism of a non- 

Newton)an oil. 

1. INTRODUCTION 

THE FLOW of non-Newtonian fluids through a porous 
medium is a topic of  special interest in man)' engin- 
eering applications. Recently, with the increasing 
interest in the production of  heavy crude oil by means 
of thermal methods, as for example the steam injection 
into oil reservoir, it has become essential to have an 
adequate understanding of  the rheological effects on 
the flow behavior in a porous medium. From a rheo- 
logical point of view, these complex fluids are non- 
Newtonian of  power law with a yield stress, in which 
the apparent viscosity is a monotonic  decreasing func- 
tion of  increasing shear rate. As a result, the following 
theological equation can be used : 

z =  H ( ' ) ) " + % ;  I ~ l > v 0  for "):~0 

and Iz[~<z0 for " ) = 0  (1) 

from which the apparent viscosity is expressed as 

120 
l ~ p = H ( ) ) " - ' + ~ ;  7 # 0  (2) 

7 

where for a shear thinning fluid n < 1. In the above 
equations r is the shear stress, To the yield stress, -) 
the shear rate, and H and n are the rheological 
parameters. 

On the other hand, from the capillary tube model 
of  pore space geometry, ") is expressed in terms of fluid 
velocity by the relation 

• 3 n +  1 c 
- (3) 

n ~/(8k~) 

where k is the permeability and ~b is the porosity. 
Considering the case of  steady plane radial flow of 
an incompressible fluid, then from the equation of  
continuity one has 

QO 

r = 2rrh/~ (4) 

in which Q0 = constant is the volumetric flow rate 
and h is the thickness of the flow system. For a shear 
thinning fu id  without any yield stress, i.e. -,~ = 0 in 
(2), the previous relations lead to the relation 

/-~v = I~,~. • n < 1 (5) 

which shows that the apparent viscosity is an increas- 
ing function of  radial distance. Consequentb ,  in non- 
Newton)an flows through a porous medium, the theo- 
logical effects are flow rate dependent• Kno~vledge of  
the implications of  relation (5) in determining the 
pressure and temperature distributions in a radial flow 
of a heated non-Newton)an fluid is relevant in oil 
reservoir engineering. Particularly, this problem is of  
great practical interest in the production of heavy 
crude oils by thermal methods, where a non-iso- 
thermal flow of a power law fluid with a yield stress 
is involved. 

The rheological measurements reported in the 
literature show that the rheological parameters n, H 
and z0 are sensitive to temperature variations. For  
example, the heavy crude oils produced from Alberta 
and Venezuela oil sands have a very high viscosity at 
room temperature. The structure of  these complex 
fluids determines a non-Newton)an behavior. While 
for light crude oils, which are Newton)an fluids, the 
viscosity is a constant depending on temperature, the 
viscosity of  heavy crude oils depends strongly on shear 
rate. It is well known that the fluids with a gel structure 
at zero rate of  shear require the use of  the threshold 
pressure gradient concept in the flow description 
through a porous medium. The flow rate-pressure 
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N O M E N C L A T U R E  

b coefficient in relation (6) 
h oil reservoir thickness 
H consistency index (rheological parameter 

in power law equation) 
k permeability 
l(t) pressure front location 
n power law exponent 
p pressure distribution 
p, pressure at the external boundary 
Pw pressure at the well radius 
Ap pressure drop 
Q0 volumetric flow rate 
R radial distance 
Re external radius 
Rw well radius 
t time 
T temperature distribution 
T, temperature at the external radius 
T~ temperature at the well radius 
v velocity. 

Greek symbols 
constant in equation (20) 

% threshold pressure gradient 
%(T~) threshold pressure gradient at the 

reference temperature T~ 
fl* compressibility coefficient 

shear rate 
~5(t) thermal penetration depth 
r/ similarity variable 
/~ap apparent viscosity 
p~f effective viscosity 
p~ viscosity at the well radius 
tr equivalent thermal diffusivity 
z shear stress 
% yield stress 
~b porosity. 

Subscripts 
ap apparent 
e external boundary 
ef effective 
R radial direction 
w well radius. 

drop relationship was found to be a curve which does 
not pass through the origin. This means that a press- 
ure gradient in excess of the threshold gradient will 
be required to initiate the flow in a porous medium, 
in which case any structure of the fluid will pre- 
sumably be broken down. 

In conditions of non-isothermal flow, the tem- 
perature variation has a significant effect on the yield 
stress, i.e. on the structure of heavy crude oils. When 
temperature is increased this structure can no longer 
exist and the heavy crude oils can behave as New- 
tonian fluids. As reported from the rheologicat 
measurements, the most sensitive rheologieal par- 
ameter to the temperature changes is the yield stress 
value. The useful empiricism for temperature depen- 
dence of 3o is expressed by the linear relation 

b 
%(T) = %(T~) + ~ - ( T - -  T~) (6) 

where %(Too) is the yield stress value expressed at the 
reference temperature T~ in a porous medium. The 
case of a cooling effect, i.e. T < To~, gives b < 0 in (6), 
since %(0 > z0(T~), whereas the case of a heating 
effect, i.e. T >  T:~, also has b < 0, since % ( T ) <  
%(T~). 

The main objective in this paper is to address the 
question of implications of the rheological effects on 
the non-isothermal flows of power law fluids with a 
yield stress. Specifically, these effects on the pressure 
and temperature distributions in a flow system of 
practical interest will be shown. 

2. STEADY STATE SOLUTIONS 

In this section the rheological effects of a power law 
fluid with a yield stress on the pressure and tem- 
perature distributions in a non-isothermal steady flow 
through a porous medium are illustrated. For this 
purpose, we consider a well located centrally in an oil 
reservoir producing at a constant pressure or flow 
rate. In this case we have a plane radial flow, in which 
case a modified Darcy's law, including the rheological 
effects associated with equation (1), may be written 
as [1] 

= k[-l P 1 (7) 
IvRIn mr LIOR 

where 

~>~o for vR ~ 0 

< ~t 0 for vR = and 0. 

From the capillary tube model of pore space geometry 
one has 

~o~ 2,F/ ~ - -  (8) 

while the threshold pressure gradient x0(T), which is 
a function of temperature T, is related to the yield 
stress %(T) by the relation 
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3:o(T) 
:~o(T) = - -  (9) 

fl being a fitting parameter to be determined exper- 
imentally, reflecting the deviation of a real porous 
medium from the capillary tube model of pore space 
geometry, used in deriving relation (9). 

The experimental evidence to support the validity 
of the basic equation (7) has been shown in ref. [2]. 
For more details on this matter we refer the interested 
reader to ref. [2]. 

As shown in the previous section, the yield stress 
variation with temperature is expressed by relation 
(6). As a result, instead of (9) we have for :%(T) in 
(7), the following relation: 

z%(T) = % ( T . ) +  bfl ( T - T ~ )  I10) 
x/k T:~, 

so that the modified Darcy's law (7) may nov, be 
written as follows: 

k [ ~p bfi ] 

where %(T~_) is the threshold pressure gradient ex- 
pressed at a reference temperature T~. 

Here we are concerned with the case of fluid pro- 
duction, so that in this situation we have ]?:p/?.R] > 0 
in (11). 

The equation of continuity for an incompressible 
fluid is 

Cv v 
~ + ~ = 0. (12) 

From (11) and (12) we have 

~:p n ~p n~o(T,:) ÷ 
~R 2 R ~R R 

= 0  (13) 

which by means of the function 

~z = p -  ~oR (14) 

may be rewritten as 

1 0 ( ~ - ~ )  bfl 1 ~ (R~(T_T~) )=O"  
R" g'R R "  ~lkT:o R" ~R 

(15) 

Integration of equations (14) and (15) leads to the 
relation 

RI-,, 
p(R) = CI--i-~_ n +O~o(T~)R+C 2 

+ ~ ( T - T ~ )  dR (16) 

where Rw is the well radius. 

As previously pointed out, the apparent viscosity 
of a power law fluid with a yield stress depends 
strongly both on the shear rate and on temperature. 
Equation (16), including the temperature effect on the 
yield stress, reflects this fact. As a result, the pressure 
distribution cannot be obtained from (16) unless the 
temperature distribution is known. For this purpose, 
one can use the energy equation, which for a steady 
state becomes 

~T a ~ [ gT \  

where cr is the thermal diffusivity and c is the fluid 
velocity in the porous medium, which in a steady flow 
is 

QO 
v=2=hR;  Qo=cons tan t  (18) 

Qo being the volumetric flow rate and h the oil 
reservoir thickness. Taking into account t18). the 
solution of equation (17) may be x~rittcn as 

T(R) = Cs +CaR" (19) 

where 

QO 
= - - -  (20) 

27the" 

To determine the constants C,, C2, Cx and Ca in (16) 
and (19), we have the following boundary conditions: 

R =  R,,; P ( R w ) = P ,  and T(R,) = T~ 

R =  Re; P(R¢) = Pc and T(R~)= 7-: 

(21) 

where R,~ is the well radius and R, is the external 
boundary radius. From (19) and (21) we have 

ATR~, 
C~ = Tw (22) 

R~ - R :  

AT 
C4 = - - -  (23) 

in which Re > R,, and 

A T =  Te-Tw; Te> T~. (24) 

Once the temperature distribution is known from 
(19), the pressure distribution is determined from (16) 
and expressed, taking into account the conditions (21) 
related to pressure, as 

R t -~ bfl(C3 - T~ ) ( R -  R~) 
P(R) = Ci ~ + % R + C 2 +  ,fkT~. 

bflC~ 
-~ (RI+'-R~+'); b<0.  (25) 

,/kT~(l+~) 
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From (7) and (25) the volumetric flow rate at the well 
can be obtained 

Qo = 2rchRw L~ \~ + 6, cah"~ +6o (26) 

in which C3 and C4 are given by previous relations 
(22) and (23). while for Ci and C2 we have 

l - n  IAp_(~o+6o)(R _Rw) C I  = i - n  I--n R~ - R.  

R~'-" [ 
C'=pw-~toR~ , - .  I - .  Ap--  (:to +6o)  

" R ~  - R .  

6,C4 ,+. ] 
× (Re - R.) - 1 - ~  (R, - R~ +')  (28) 

where 

b~(C~-~)  
,/k T~ 

and ~, = - -  
b~ 

~kT~;  

Ap = p¢-p , .  (29) 

In order to evaluate the temperature effect on the yield 
stress in a steady flow, the pressure distribution (25) 
and flow rate (26) should be compared to the situation 
when this effect is neglected. For  example, the pressure 
distribution and flow rate corresponding to an iso- 
thermal flow, i.e. b = 0 in (25)-(28), will be 

R ' - " -R ~-"  
p(R) = [Ap--~o(R=--R.)] ,_. ,_. 

Re - R .  

and 

+Oto(R-R~,)+p, (30) 

Qo = 2nh V - ( ] -n )k  A p - ~ o ( R = - R . ) ]  '/" k /~r ~ ~  j . (31) 

In order to show the temperature effect on the press- 
ure distribution in a steady flow, we consider the 
following illustrative example : 

R , = 0 ,  R=-- 100m, h =  10m, a =  10 -6mEs  - ] ,  

Q0 = 10 m3/24 h, T~ = 7", = 20°C, To = 50°C, 

b =  l k g m  -2, k =  1Darcy,  f l =  10 - l  

and Ap----- 40a tm.  

Figures 1 and 2 show the dimensionless pressure 
(p-p,) / (p=-p,)  expressed in terms of  dimensionless 
radius R/R~ for n = 0.5 and 0.8, when the temperature 
effect does not exist. For  a comparison,  the case when 
this effect is considered is shown in Fig. 3 for n = 0.8, 
from which it can be seen that the pressure profiles 
are significantly al tered; note that the dimensionless 
group f~ = otoR¢/A p indicates the effects associated 
with the threshold pressure gradient at T~. 
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FIG. 1. Effects of threshold pressure gradient on pressure 
distributions for n = 0.5 ; isothermal flow. 
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Effects of threshold pressure gradient on pressure 
distributions for n = 0.8 ; isothermal flow. 
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FIG. 3. Effects of threshold pressure gradient on pressure 
distributions for n = 0.8 ; non-isothermal flow. 

3. UNSTEADY STATE SOLUTIONS 

This section is concerned with the illustration of  the 
rheological effects on the pressure and temperature 
distributions in an unsteady flow. A simple case is 
considered in which the flow is one-dimensional for a 
power law fluid only, i.e. in the absence of  a yield 
stress effect. As a result, equations (32) and (33), 
describing the heat transfer and unsteady flow, 
become decoupled, since the rheological parameters 
H and n occurring in the effective viscosity /~=r (see 
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relation (8)) are temperature independent. Therefore, 
the temperature effect on the flow behavior is ignored. 
Obviously, this case is just  a first approximation in an 
attempt to illustrate analytically the rheological effects 
of power law fluids on the pressure and temperature 
distributions. Consequently, for this case the previous 
equations (7) and (17) become 

k @  
Ivr - (32) 

#~f Ox 

and 

OT OT 02T 
~ -  + V ~ x  x = a-0x 2 . (33) 

In an unsteady flow, the equation of continuity for a 
slightly compressible fluid may be written as in ref. [3] 

Ov _ I:t*d~ ~p (34) 
Ox "- ~- Ot 

where t*  is the coefficient of fluid compressibility. 
Equations (32) and (34) lead to the pressure equa- 

tion [4] 

(OP~ I-")/" 02p - (35) @ 
ax,I Ox z - na: a--t 

in which 

,, "X Un /~ef) , a 2 =  ~ -  fl ~b (36) 

with #edk given by relation (8). 
As shown in ref. [3], the similarity variable 

= xt  -"/°+") (37) 

reduces the partial differential equation (35) to the 
ordinary differential equation 

d2p na 2 {dp'~2.- I)1. 
+ =0 .  (38) 

d~t 2 

From (38) we have 

dp [ C  n a 2 1 - n  f /(1-") 
d---~ = 2 l + n  q2 (39) 

where C is a constant, while the relations (32), (37) 
and (39)give the velocity distribution 

( k ~  TM [ na 2 ~-nql--n 2-]VO-")_l 
v = t - 1 / ( 1 + " )  c • . 

\ # a /  2 

(4O) 

Clearly, this equation shows for n < 1, i.e. for a 
shear thinning fluid, the existence of a pressure front 
at r /=  r/~ for which one has v ~ 0 for q < q 1 and v = 0 
for r//> rh. This means p(x, t) < po for 0 < x < l(t) 
andp(x,  t) = Pe = constant for x /> l(t) ; l(t) being the 
front location and po the pressure at t = 0. 

As a result, equation (40) may be rewritten as 
follows : 

k ~1/,, 
l) = t --  1 / ( l + n ) B ( q 2 - - ? ~ 2 ) l / ( l - n )  ; ?1 < 711 

\/~ef] 

(41) 

in which q l is a constant  to be determined and B is 
given by the relation 

[.e(,-._)l,,,,-., B =  L 2 ( l + n )  _] " (42) 

In terms of front location l(t) 

l(t) = rht "/(1+") ; th = constant  (43) 

equation (41) is expressed in the form 

\#c---f/ BrlZl/(l-.>t-,/(1+.) 1 -- l~) 

(44) 

for 0 < x < l(t) and v = 0 for x >/l(t). At the outface 
flow, i.e. x = 0, equation (44) gives the velocity vari- 
ation in time for monitoring a constant  pressure Pw 
there 

V = Brl~/(1 +') t -  1/(1 +.). (45) 

In order to determine r/1 = constant  in (45) we can 
use the condition of pressure continuity at the front 
location 

p(l(t), t) = Pc = constant. (46) 

Since at the front location we have v = 0 ,  or 
dp/dq[, = ,, = 0, then 

na 2 1-- n 2 
C=--17-n 

in (39). Integration of (39) yields 

p = p w + B * J .  ~ rh 

where 

and 

(48) 

B* [ n ( l  - n)a 21 "/(1-") 
= k 2-(1--~ _] q~l+.)/o-.). (49) 

Using (46), i.e. p(q z) = po, from (47) one obtains 

( l,-.,,.+., F2(1+n)l-,, TM, 
r/, = \ J . ( 1 ) ]  . k ( 1 - n ) a  2] = constant  

(50) 

in which Ap = po--pw and 



1942 H. PASCAL 

1-  n 

 2,nj, n 
l+nF( '+. 

(51) 
F being the gamma function. 

From previous relations, the pressure distribution 
(47) may be expressed as 

- -  = - -  (52) 
P, --Pw J , ( l )  

Once q t is determined from (50), the pressure front 
location l(t), given by relation (43), may be known, 
while the front velocity may also be known from 

dl n - I,'o+., (53) v= ~Tt= 4m, i -~t  

The most important aspect arising from (53) is that 
the pressure disturbances in a non-Newtonian fluid 
with n < 1, flowing through a porous medium, propa- 
gate with a finite velocity. This is in contrast to the 
infinite velocity of pressure disturbance propagation 
in a Newtonian fluid, obtained from the parabolic 
linear equation, i.e. the case n = 1 in (35). Conse- 
quently, the self-similar solutions (44) and (52) exhibit 
traveling wave characteristics. From these solutions, 
it is evident that in a non-Newtonian fluid there exists 
a moving pressure front. This front separates the 
disturbed flow domain 0 < x < l(t) from another 
x > l(t) which has not felt the effects of pressure dis- 
turbances. For further discussion on this matter, the 
reader is referred to ref. [8]. This relevant result is a 
consequence of  the non-linear effects associated with 
power law fluids, where the apparent viscosity of a 
shear thinning fluid is a monotonically increasing 
function of decreasing velocity. The considerations 
shown above point out the fundamental differences in 
the mechanism of pressure disturbance propagation 
in Newtonian and non-Newtonian fluids flowing 
through porous media. 

According to (53) the front movement is deceler- 
ating. To determine the temperature distribution we 
have the energy equation (33), which integrated over 
the distance 6(0 becomes 

c3 if( ') d3 o T d x -  T(6(t)) d i  

+ l  v - - d x = a  - (54) 
30 ex ~,(,) ~ o  

in which 3(0 is the thermal penetration depth. 
The boundary conditions for the temperature dis- 

tribution in the region 0 < x < 6(0 are expressed as 

x = 0 ; T(0, t) = Tw = constant 

x = 3(0 ; T(6(t), t) = Tr = constant. (55) 

A convenient form of the temperature distribution, 
satisfying the conditions specified in (55), is 

X " 
T(x, t)  = T r - A T  1-- ; O < x < 6(t) (56) 

where AT = T f -  Tw. From (56) one has 

&,cc~-T x = 0 and c~T = 2AT 
- 6o)  - ~ x  x = o 6 ( t )  (57) 

and 

0 fr(') 2Tf+ Tw d6 (58) 
~tJo T d x = ~  dt-  

The assumption of  a thermal penetration depth 6(0 
gives rise to two new boundary, conditions: 
T(3(t). t) = Tr and dT/dxlx=6,) = 0. From (56) and 
(57) it can be seen that these conditions are satisfied. 
By substituting relations (44) and (56)-(58) into (54) 
we obtain 

d3 6f2t - L(t+") 

dt 3(0 

where 

f?(, 
x 2 '~,/(t - . ,  6o- 

× l -  = (59) 

= - -  Br/2"(J -.) (60) 
\/ter/ 

The determination of an analytical expression for 6(0 
from (59) is quite cumbersome, so that in these cir- 
cumstances it is natural to look for the asymptotic 
behaviors of 6(t). For example, taking into account 
that x / l ( t )<  1, then the following approximate 
relation : 

X 2 ~'/('-") 1 x 2 
1 - / ~ ]  = 1 l - - n  l : ( t )  (61) 

may be used in (59), which appears to be a reasonable 
approximation for a long time solution, where l(t) is 
large. In this case, from (59) we have 

6(t3 E~/-(~+ 2")/u +") 
dt + 2 ( l -n ) t /2  6 3 - 3 ~ t - ~ / u + " ' 6 - 6 a  = O. 

(62) 

Considering the case when a ~ 0, i.e. the heat trans- 
fer mechanism is mainly by convection, then (62) 
becomes a Riccati equation expressed as 

t + R(t)62 = P(t) 

where 

R(t) = 

(63) 

f ~ t - - (  l + 2n)/( l + n) 

2(1 - n ) , l ,  ~ 
and P(t) = 3f~t-'/(t +.). 

(64) 
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The solt,,tion of  non-l inear  equa t ion  (62) requires 
a numerical  procedure.  As observed from numerical  
computa t ions ,  the coefficient f2 in (62) is extremely 
small for the cases of  practical interest  in oil reservoir 
engineering. As a result, the terms conta in ing  f2 in 
(62) can be safely neglected. These terms reflect 
the convect ion effect in the heat  t ransfer  mechanism 
in a shear th inn ing  fluid flowing th rough  a porous  
medium. The rheological  effects of  shear  th inning  
fluid, which are velocity dependent ,  lead to extremely 
small velocities in a porous  medium, compared  to the 
case of a Newton ian  fluid. It should be noted that  the 
apparen t  viscosity of a shear  th inning  fluid is 
an increasing funct ion of decreasing velocity. The 
numerical  results obta ined  from (62) clearly indicate 
that  the heat t ransfer  mechanism in a non -Newton ian  
fluid flowing th rough  a porous  medium is mainly by 
conduct ion.  Consequent ly ,  the terms in (62) associ- 
ated with the convect ion effect may be ignored, in 
which case we have 

~5(t) = (12c~t) ' 2. (65) 

On the other  hand,  if the conduc t ion  effect is 
neglected, i.e. a = 0, then, in a first approximat ion ,  
equat ion  (62) yields 

3(I 
6(t) _~ + n ' f 2  t" ~r'"~ (66) 

) 

/7 

which is similar to relat ion (43), giving the location 
of  the pressure front  with a different coefficient. It 
should bc kept in mind that  previous results are valid 
for the case when the fluid flow is due to the decom- 
pression of  a slightly, compressible fluid with non-  
Ncwtonian  behavior.  

4, C O N C L U D I N G  REMARKS 

In this invest igation we have analyzed the rheo- 
logical effects of  non-Newton ian  fluids in some non-  
isothermal flows th rough  a porous  medium of  prac- 
tical interest in oil reservoir engineering. In the case 
of a steady flow of  a power law fluid with a yield stress, 
i.e. in the presence of  a threshold pressure gradient,  
the pressure dis t r ibut ion is significantly altered by the 
yield stress var ia t ion with temperature.  There are sig- 

nificant differences between the pressure profiles ~ i th  
and wi thout  yield stress, as may be seen from Figs. 
l -3 ,  

The unsteady state solutions for the case of a shear 
th inning  fluid in the absence of a yield stress, obtained 
from decoupled equat ions  of  heat and  fluid flow. indi- 
cate tha t  the tempera ture  d is t r ibut ion is not signifi- 
cantly affected by the fluid flow effect, provided that  
the theological  parameters  are temperature  inde- 
pendent.  It should  be pointed out  tha t  for a shear 
th inning  fluid, the theological  effects on the ~iscositv 
are velocity dependen t :  the viscosity is a mono-  
tonically decreasing function of  velocity. The fluid 
velocity in an oil reservoir conta in ing a non- 
Newton ian  fluid, produced under  decompression,  will 
be extremely small. In these circumstances,  the heat 
t ransfer  mechanism in a shear th inning fluid flowing 
th rough  a porous  medium was found to be mainly b~ 
conduct ion.  F r o m  a fluid mechanics point  of vie~. it 
is interest ing to observe that  relation (53), giving the 
pressure front  velocity, is identical to relation (451. 
giving the flttid xclocity at q = 0. except f,~r the c~,- 
cfiqcients. 
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ECOULEMENT NON ISOTHERME D'UN FLUIDE NON NEWTONIEN A TRAVERS 
UN MILIEU POREUX 

R~sum&-On consid~re les effets rh~ologiques d'un fluide non newtonien sur quelques 6coulements non 
isothermes. Ces effets sont illustr+s sur les distributions de temperature et de pression dans le cas d'un 
fluide ~i loi puissance pour lequel la tension de cisaillement drpend de la temprrature. Les solutions 
permanentes pour l'rcoulement radial sont obtenues analytiquement. On illustre grapbiquement l'effet de 
la temprrature sur les distributions de pression. Les solutions variables sont obtenues pour un ~coulement 
monodimensionnel dans lequel le comportement non-newtonien est une simple loi puissance avec des 
param&res rhrologiques ind~pendants de la temperature. Ces solutions d&enninent les distributions de 
pression et de temprrature quand les +quations de base sont d~coupl,Ses et l'rcoulement du fluide se produit 

sous l'effet d'un mrcanisme de d&ompression 61astique d'une huile non newtonienne. 
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N I C H T I S O T H E R M E  S T R O M U N G  EINES N I C H T - N E W T O N S C H E N  FLUIDS D U R C H  
EIN POROSES M E D I U M  

Zusammenfassung--Es  wird die Frage der rheologischen Einflfisse eines nicht-newtonschen Fluids au f  
nichtisotherme Str6mungen durch ein por6ses Medium er/Srtert. Diese Einftiisse werden anhand  yon 
Temperatur-  und Druckverteilungen f~r den Fall eines "'power law"-Fluides mit temperaturabh5ngiger 
FlielSspannung verdeutlicht. Die station'/iren L6sungen der radialen Str6mungen werden au f  analytischem 
Weg ermittelt. Der Temperatureinflul3 au f  die Druckverteilung wird grafisch gezeigt. Weiterhin werden 
instation/ire L6sungen f/Jr die eindimensionale Str~Smung ermittelt, bei der sich das nicht-newtonsche 
Verhalten au f  den "'power law"-Ansatz beschrfinkt und die rheologischen Parameter  temperatur- 
unabhfingig sind. Diese L6sungen best immen die Druck- und Temperaturverteilungen, wenn die Grund-  
gleichungen entkoppelt sind und die Str6mung aus dem elastischen Dekompressions-Mechanismus 

eines nicht-newtonschen ()Is hervorgeht. 

H E H 3 O T E P M H q E C K O E  T E q E H H E  H E H b l O T O H O B C K H X  2KH~KOCTEIYl qEPE3  
r IOPHCTYIO C P E ~ Y  

Amaoratma--Hccae~tyeTca  a ~ m H n e  peoJlorHqeclcHx ~ g T O e  Ha HeH3OTepMHtleCEHe TeqeHMS HeHblOTO- 
HOBCgHX xot~gocre~ qepe3 nopncryto cpe~y. FlpnBenea~ pacnpe~eneHHa TeMnepaTyp n ~asneHH~ a 
cny~ae CTeHeHHOfi XH~[KOCrH C Hpe]leJlbHl~M Hanp~IXeHHeM c~BHra, 3 a B H C ~ M  OT TeMnepaTyp ta. AHa- 
JIHTHqeCKH onpc~e.qeH~ CTaiLqoHapHHe pemeHH~l ~ i  pa]IHaJIbHOrO TetleHH~L I 'pa~a~ecr~ t1ogaaaHo 
BJIH$1HHe TeMllepaTypH Ha pacnpc~e.qeHH~ ~aBJIeHHI~. ['[O~y~IeHH TaKxe HeCTaRHOHapHHe pCU.IeHH~I ]UI~i 
O~HOMepHoro TeqeHH~, npH XOTOpOM IIOBe~eHHe HeHb~OTOHOBCKO~ )KH]IEOCTH orlpe~eJIReTcg TOHbKO 
CTcneHHbIM 3aKOHOM, a pcoylOrHtlecKHe napaMcTp~i He 3aBHCgT OT TeMHepaTypbl. ~TH pelliCIiHg HO3- 
BOYI~ilOT HaHTH pacnpc~CnCHH~t ]laBJIeHHH H TeMnepaTyp B cny~ae, Korea OCHOBHble ypaBHeHH~ He B3aH- 
MOCB~I3aHbl, a Te~IeHHe ~KH~XOCTH HpOHCXO~IT nO MexaHH3My ynpyro~ ~CKOMHpeCCHH HeHblOTOHOBCKO~ 

~H~XOCTH THna He(~TH. 




