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Abstract—The question of the rheological effects of non-Newtonian fluids on some non-isothermal flows
through a porous medium is addressed. These effects are illustrated on the temperature and pressure
distributions for the case of a power law fluid with a yield stress. in which the yield stress is temperature
dependent. The steady state solutions for the radial flow are analytically obtained. The temperature effect
on the pressure distributions is graphically illustrated. The unsteady state solutions for one-dimensional
flow, in which non-Newtonian behavior is of power law only and rheological parameters are temperature
independent, are also obtained. These solutions determine the pressure and temperature distributions when
the basic equations are decoupled and the fluid flow occurs due to the decompression mechanism of a non-
Newtonian oil.

1. INTRODUCTION

THE FLOW of non-Newtonian fluids through a porous
medium is a topic of special interest in many engin-
eering applications. Recently, with the increasing
interest in the production of heavy crude oil by means
of thermal methods, as for example the steam injection
into oil reservoir, it has become essential to have an
adequate understanding of the rheological effects on
the flow behavior in a porous medium. From a rheo-
logical point of view, these complex fluids are non-
Newtonian of power law with a yield stress, in which
the apparent viscosity is a monotonic decreasing func-
tion of increasing shear rate. As a result, the following
rheological equation can be used :

T=HE) ' +1; |1l >1, for 7#0

and |t <1y, for 7=0 (1)

from which the apparent viscosity is expressed as

T
Hap = HG)"™ '+ 7"

7#0 (2)
where for a shear thinning fluid n < 1. In the above
equations 7 is the shear stress, 7, the yield stress, 7
the shear rate, and H and n are the rheological
parameters.

On the other hand, from the capillary tube model
of pore space geometry, 7 is expressed in terms of fluid
velocity by the relation

jontl e 3)
n J@kg)
where k is the permeability and ¢ is the porosity.
Considering the case of steady plane radial flow of
an incompressible fluid, then from the equation of
continuity one has

2
2nhR

(G))

in which Q, = constant is the volumetric flow rate
and A is the thickness of the flow system. For a shear

thinning fluid without any yield stress, i.e. -, =0 in
(2), the previous relations lead to the relation
R t—n
Hap Hy (7{:) n<l (3)

which shows that the apparent viscosity is an increas-
ing function of radial distance. Consequently, in non-
Newtonian flows through a porous medium, the rheo-
logical effects are flow rate dependent. Knowledge of
the implications of relation (5) in determining the
pressure and temperature distributions in a radial flow
of a heated non-Newtonian fluid is relevant in oil
reservoir engineering. Particularly, this problem is of
great practical interest in the production of heavy
crude oils by thermal methods, where a non-iso-
thermal flow of a power law fluid with a vield stress
is involved.

The rheological measurements reported in the
literature show that the rheological parameters n, H
and 7, are sensitive to temperature variations. For
example, the heavy crude oils produced from Alberta
and Venezuela oil sands have a very high viscosity at
room temperature. The structure of these complex
fluids determines a non-Newtonian behavior. While
for light crude oils, which are Newtonian fluids, the
viscosity is a constant depending on temperature, the
viscosity of heavy crude oils depends strongly on shear
rate. It is well known that the fluids with a gel structure
at zero rate of shear require the use of the threshold
pressure gradient concept in the flow description
through a porous medium. The flow rate-pressure
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NOMENCLATURE
b coefficient in relation (6) %o threshold pressure gradient
h oil reservoir thickness ®o(T,) threshold pressure gradient at the
H consistency index (rheological parameter reference temperature T,

in power law equation)
k permeability
I(t)  pressure front location

n power law exponent
p pressure distribution
Pe pressure at the external boundary

Pw pressure at the well radius

Ap  pressure drop

Qo  volumetric flow rate

R radial distance

R, external radius

R, well radius

t time

T temperature distribution

T, temperature at the external radius
T, temperature at the well radius
v velocity.

Grecek symbols
x constant in equation (20)

B* compressibility coefficient

¥ shear rate
o(#)  thermal penetration depth
n similarity variable

Map apparent viscosity

Her effective viscosity

He viscosity at the well radius
equivalent thermal diffusivity

T shear stress

To yield stress

¢ porosity.
Subscripts

ap apparent

e external boundary

ef effective

R radial direction

w well radius.

drop relationship was found to be a curve which does
not pass through the origin. This means that a press-
ure gradient in excess of the threshold gradient will
be required to initiate the flow in a porous medium,
in which case any structure of the fluid will pre-
sumably be broken down.

In conditions of non-isothermal flow, the tem-
perature variation has a significant effect on the yield
stress, i.e. on the structure of heavy crude oils. When
temperature is increased this structure can no longer
exist and the heavy crude oils can behave as New-
tonian fluids. As reported from the rheological
measurements, the most sensitive rheological par-
ameter to the temperature changes is the yield stress
value. The useful empiricism for temperature depen-
dence of 1, is expressed by the linear relation

b
W) =5o(T)+ 7= (T-T) (6

where 1,(T,.) is the yield stress value expressed at the
reference temperature T, in a porous medium. The
case of a cooling effect, i.e. T < T, gives b < 0in (6),
since 7o(f) > 14(T,), whereas the case of a heating
effect, i.e. T> T,, also has b <0, since 7,(7T) <
To(7T.).

The main objective in this paper is to address the
question of implications of the rheological effects on
the non-isothermal flows of power law fluids with a
yield stress. Specifically, these effects on the pressure
and temperature distributions in a flow system of
practical interest will be shown.

2. STEADY STATE SOLUTIONS

In this section the rheological effects of a power law
fluid with a yield stress on the pressure and tem-
perature distributions in a non-isothermal steady flow
through a porous medium are illustrated. For this
purpose, we consider a well located centrally in an oil
reservoir producing at a constant pressure or flow
rate. In this case we have a plane radial flow, in which
case a modified Darcy’s law, including the rheological
effects associated with equation (1), may be written

as [1}
loal =£[§—§ —ao(r)] )
where
‘g—% >a, for vg#0
and 5—2' <a, for vg=0.

From the capillary tube model of pore space geometry

one has
(YT e
te 2H\1+3n) \ ¢

while the threshold pressure gradient x,(7"), which is
a function of temperature T, is related to the yield
stress to(7") by the relation
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1(T) = Pr(D) &)
\/k
f being a fitting parameter to be determined exper-
imentally, reflecting the deviation of a real porous
medium from the capillary tube model of pore space
geometry, used in deriving relation (9).

The experimental evidence to support the validity
of the basic equation (7) has been shown in ref. [2].
For more details on this matter we refer the interested
reader to ref. [2].

As shown in the previous section, the yield stress
variation with temperature is expressed by relation
(6). As a result, instead of (9) we have for 2,(T) in
(7), the following relation:

bp

2o(T) = ao(Te) + —,— kT,

(T T,) (10)

so that the modified Darcy’s law (7) may now be
written as follows:

" k
el =
Ko

where ao(7T,.) is the threshold pressure gradient ex-
pressed at a reference temperature T ...

Here we are concerned with the case of fluid pro-
duction, so that in this situation we have |3p/¢R| > 0
in (11).

The equation of continuity for an incompressible
fluid 1s

cp
R

2 (T=T, ) h
KT, (r ) —ao(T )jl (i

-

Cv+v_0 12
éR R (12)
From (11) and (12) we have
Ep onip na(Ty)
¢R° T RER R
L LN 0 (13
JkT, arTRT-T=) =0 (1)

which by means of the function
T =p—%R (14)

may be rewritten as
L f?_ e n bB 1
R ¢R oR \/kT R 3R
(15)

Integration of equations (14) and (15) leads to the
refation

(R"(T T.)) =0.

Y —n

+ao(T)R+C,
I—n

p(R)=C,

\/kT

where R, is the well radius.

1939

As previously pointed out, the apparent viscosity
of a power law fluid with a yield stress depends
strongly both on the shear rate and on temperature.
Equation (16), including the temperature effect on the
yield stress, reflects this fact. As a result, the pressure
distribution cannot be obtained from (16) unless the
temperature distribution is known. For this purpose,
one can use the energy equation, which for a steady

state becomes
o C R éT
“RER\ R

where ¢ is the thermal diffusivity and ¢ is the fluid
velocity in the porous medium, which in a steady flow
is

'"50)
2:|~1

(7

D)

)= ZShOR; Q, = constant (18)
Q, being the volumetric flow rate and /4 the oil
reservoir thickness. Taking into account (18). the
solution of equation (17) may be written as
T(R) = C;+ C,R* (19
where
2 .
= . ‘_0
2nhe (20)

To determine the constants C,, C,, C; and C,in (16)
and (19), we have the following boundary conditions :

R=R,; P(R,)=P, and T(R,) =T
R=R,; P(R)=P, and T(R)=T.
(20
where R, is the well radius and R, is the external

boundary radius. From (19) and (21) we have

ATR;

= _— (22
C,=T, E-R (22)
AT
= 23
Co=pg (23)
in which R, > R, and
AT=T,-T,; T.>T,. (24)

Once the temperature distribution is known from
(19), the pressure distribution is determined from (16)
and expressed, taking into account the conditions (21)
related to pressure, as

R bB(C;—T,)
= u— b] R R
P(R) = C\y— +@R+C:+ a7, (R-RY
bBC (R™* =R b<0. (29

JET . (1+a)
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From (7) and (25) the volumetric flow rate at the well
can be obtained

k (C, b
Qo =2mhR, | —| 5 +90,C4R;, + 9, (26)
Her Rw
in which C; and C, are given by previous relations
(22) and (23), while for C, and C, we have

l—n
Ci = W[AP-(% +3H(R.—R.)
6|C4 l+a l+2a
Rl—n
C:=pu—%R, — W[Ap—(io'ﬂso)
é6,C
X (Re=R) = 7 (R —Rm] (28)
where
s _BBC=T) o bR
° VKT ' JKT
Ap =p.—p.. (29)

In order to evaluate the temperature effect on the yield
stress in a steady flow, the pressure distribution (25)
and flow rate (26) should be compared to the situation
when this effect is neglected. For example, the pressure
distribution and flow rate corresponding to an iso-
thermal flow, i.e. b = 0 in (25)-(28), will be

Rl—n_Rl—n

+a0(R_Rw)+pw

P(R) = [Ap—2o(R.— R,)]

(30)

and

1—n)k Ap~ao(R.—R,) |

(I—n)k Ap lito( - W 1)
Her Re n—'Rw "

In order to show the temperature effect on the press-

ure distribution in a steady flow, we consider the
following illustrative example:

Qo = 21rhl:

R,=0, R=100m, h=10m, 6 =10"°m?s™',
o=10m?*24h, T, =T,=20°C, T,=50°C,
b=1kgm™3 k=1Darcy, §=10""
and Ap = 40 atm.

Figures 1 and 2 show the dimensionless pressure
(p—p.)/(p.—p.) expressed in terms of dimensionless
radius R/R. for n = 0.5 and 0.8, when the temperature
effect does not exist. For a comparison, the case when
this effect is considered is shown in Fig. 3 for n = 0.8,
from which it can be seen that the pressure profiles
are significantly altered ; note that the dimensionless
group Q = a,R./Ap indicates the effects associated
with the threshold pressure gradient at 7.
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F1G. 1. Effects of threshold pressure gradient on pressure

distributions for n = 0.5; isothermal flow.

} -
¢ J
0_0
=
o 4
& J
1.1
R/Rg
FiG. 2. Effects of threshold pressure gradient on pressure
distributions for n = 0.8 ; isothermal flow.
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FiG. 3. Effects of threshold pressure gradient on pressure
distributions for n = 0.8; non-isothermal flow.

3. UNSTEADY STATE SOLUTIONS

This section is concerned with the illustration of the
rheological effects on the pressure and temperature
distributions in an unsteady flow. A simple case is
considered in which the flow is one-dimensional for a
power law fluid only, i.e. in the absence of a yield
stress effect. As a result, equations (32) and (33),
describing the heat transfer and unsteady flow,
become decoupled, since the rheological parameters
H and n occurring in the effective viscosity u. (see
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refation (8)) are temperature independent. Therefore,
the temperature effect on the flow behavior is ignored.
Obviously, this case is just a first approximation in an
attempt to illustrate analytically the rheological effects
of power law fluids on the pressure and temperature
distributions. Consequently, for this case the previous
equations (7) and (17) become

._ Kk op
o = o (32)
and
or  or o°T
—a‘t_ +Ua = 667 (33)

In an unsteady flow, the equation of continuity for a
slightly compressible fluid may be written as in ref. [3]

o

* P
= Py, (34

where f* is the coeflicient of fluid compressibility.
Equations (32) and (34) lead to the pressure equa-

tion [4]
ap (1—m/n a2p Zap
in which
I/n
o = ("7) B¢ (36)
with u./k given by relation (8).
As shown in ref. [3], the similarity variable
7 = xgA+n 37

reduces the partial differential equation (35) to the
ordinary differential equation

d2p na2 dp (2n— 1)/n

d_712+ 1+nn(d_i1 =0. (38)
From (38) we have

dp na* 1—n , /="

dn= [C =3 Tea” @

where C is a constant, while the relations (32), (37)
and (39) give the velocity distribution

:Il/(l—n)

2 .

k" na’l1—n

(2 ,uvaemf @ 270

v <,uef> d [C 2 l+n11
(40)

Clearly, this equation shows for n < 1, i.e. for a
shear thinning fluid, the existence of a pressure front
atyn = 5, for which one hasv # 0 fory < n,andv = 0
for = n,. This means p(x, 1) < p, for 0 < x < I(¢)
and p(x, t) = p, = constant for x > I(¢) ; I(f) being the
front location and p, the pressure at ¢ = 0.

As a result, equation (40) may be rewritten as
follows :

1941

I/n
v= (£> VDBt =)V <
Het, -

@én

in which #, is a constant to be determined and B is
given by the relation

naZ(l_n) 1/(1—n)
B= [ 2(1+n) : “42)
In terms of front location I(¢)
I(f) = 1" ; 4, = constant (43)

equation (41) is expressed in the form

k i/n x2 1(1—n)
p=|— B 2/(l—n)t— 1/(1+n) <1 —
<uef> " 20

(44)

for 0 < x < I(f) and v = O for x = I(f). At the outface
flow, i.e. x = 0, equation (44) gives the velocity vari-
ation in time for monitoring a constant pressure p,,
there

k 1/n
v=1{— Bﬂ%/(1+")t—1/(l+"). - (45)
HMet,

In order to determine 5, = constant in (45) we can
use the condition of pressure continuity at the front
location

p(l(®), 1) = p, = constant. (46)
Since at the front location we have v=0, or
dp/dnl,—,, = 0, then

- na’ 1—n

C=

2

2 1+n’71

in (39). Integration of (39) yields

1 1 U
== w+B“‘J,,<—>; —<1 47
P(ﬂn) P m M “n
where
7] n,
J, (—>= A-&ymde @)
U o
and
n/(1—n)
«_ | P1—n)a’ (141 —n)
B |:2(1+n) n - @)

Using (46), i.e. p(n;) = p., from (47) one obtains

Ap (1—-n)/(1+nr) 2(1+n) n{(14+n)
m = ('In(l)> 7 |:———<1 -—n)az] = constant

(50
in which Ap = p.—p,, and
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n
\/nn r (1——">
I+n t+n
r (2<1 —n))

(D

J(l)—f (1=gyi-m d¢ =

I' being the gamma function.
From previous relations, the pressure distribution
(47) may be expressed as

+(3)
P—Pw _ M

pe—pu  J(1)

(52)

Once 7, is determined from (50), the pressure front
location (1), given by relation (43), may be known,
while the front velocity may also be known from

d/
dr =¢mi, 1+n

e

V=q¢— (53)
The most important aspect arising from (53) is that
the pressure disturbances in a non-Newtonian fluid
with n < 1, flowing through a porous medium, propa-
gate with a finite velocity. This is in contrast to the
infinite velocity of pressure disturbance propagation
in a Newtonian fluid, obtained from the parabolic
linear equation, i.e. the case n =1 in (35). Conse-
quently, the self-similar solutions (44) and (52) exhibit
traveling wave characteristics. From these solutions,
it is evident that in a non-Newtonian fluid there exists
a moving pressure front. This front separates the
disturbed flow domain 0 < x < (¢) from another
x > I(r) which has not felt the effects of pressure dis-
turbances. For further discussion on this matter, the
reader is referred to ref. [8]. This relevant result is a
consequence of the non-linear effects associated with
power law fluids, where the apparent viscosity of a
shear thinning fluid is a monotonically increasing
function of decreasing velocity. The considerations
shown above point out the fundamental differences in
the mechanism of pressure disturbance propagation
in Newtonian and non-Newtonian fluids flowing
through porous media.

According to (53) the front movement is deceler-
ating. To determine the temperature distribution we
have the energy equation (33), which integrated over
the distance §(¢) becomes

5 50 ds

Y E N L4
, VxS T ax

oT)|

5() ox

] (59

in which 6(z) is the thermal penetration depth.
The boundary conditions for the temperature dis-
tribution in the region 0 < x < §(¢) are expressed as

x=0;
x=480;

T, = T, = constant

T(6(1), ) = T; = constant.  (55)

H. PascaL

A convenient form of the temperature distribution,
satisfying the conditions specified in (55), is

T(x,0) = Tr—AT(I - %) 0<x<d@) (56

where AT = T;—T,. From (56) one has
oT oT 2AT
— = =— =— 7
(?x v = 8() 0 and 6x x =0 O(t) (5 )
and
a [°® 2T+ T, dé
EJ; Tdx= @ (58)

The assumption of a thermal penetration depth ()
gives rise to two new boundary conditions:
T(5(1), t) = T; and 0T/0x]|, - 5y = 0. From (56) and
(57) it can be seen that these conditions are satisfied.
By substituting relations (44) and (56)-(58) into (54)
we obtain

ds  6Q-V(m o0 x
a“—a(rﬁ (“a"@)

x2 /(1 —n) 60'
where
1/n
Q= (i) Bp¥a-n, (60)
Her,

The determination of an analytical expression for 5(¢)
from (59) is quite cumbersome, so that in these cir-
cumstances it is natural to look for the asymptotic
behaviors of 4(¢). For example, taking into account
that x/I(r) <1, then the following approximate

relation:
l x2 Y(l—n) - 1 1 xZ
131 T T 1=nli)

may be used in (59), which appears to be a reasonable
approximation for a long time solution, where /(?) is
large. In this case, from (59) we have

dé Qt—(l+2n)/(l+n)

bt 83 __ —W(l+m 5 _ =0
6dt+ A—mn 6’ =30 d—60

(61)

(62)

Considering the case when ¢ — 0, i.e. the heat trans-
fer mechanism is mainly by convection, then (62)
becomes a Riccati equation expressed as

i +R(1)5* = P(D)

det €3

where

Q[~(l+2n)/(l+n)

O ==t

and P(r) = 3Qt~ VI,

(64
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The solution of non-linear equation (62) requires
a numerical procedure. As observed from numerical
computations, the coeflicient Q in (62) is extremely
small for the cases of practical interest in oil reservoir
engineering. As a result, the terms containing Q in
(62) can be safely neglected. These terms reflect
the convection effect in the heat transfer mechanism
in a shear thinning fluid flowing through a porous
medium. The rheological effects of shear thinning
fluid. which are velocity dependent, lead to extremely
small velocities in a porous medium, compared to the
case of a Newtonian fluid. It should be noted that the
apparent viscosity of a shear thinning fluid is
an increasing function of decreasing velocity. The
numerical results obtained from (62) clearly indicate
that the heat transfer mechanism in a non-Newtonian
fluid flowing through a porous medium is mainly by
conduction. Consequently, the terms in (62) associ-
ated with the convection effect may be ignored. in
which case we have

5(0) = (1260)"2. (63)
On the other hand. if the conduction effect is
neglected. ie. o = 0, then, in a first approximation,
equation (62) yields

5(t) > prtt=m (66)

(1+mQ
n
which is similar to relation (43), giving the location
of the pressure front with a different coefficient. It
should be kept in mind that previous results are valid
for the case when the fluid flow is due to the decom-
pression of a slightly compressible fluid with non-

Newtonian behavior.

4. CONCLUDING REMARKS

In this investigation we have analyzed the rheo-
logical effects of non-Newtonian fluids in some non-
isothermal flows through a porous medium of prac-
tical interest in oil reservoir engineering. In the case
of a steady flow of a power law fluid with a yield stress,
i.e. in the presence of a threshold pressure gradient,
the pressure distribution is significantly altered by the
yield stress variation with temperature. There are sig-
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nificant differences between the pressure protiles with
and without yield stress, as may be seen from Figs.
1-3.

The unsteady state solutions for the case of a shear
thinning fluid in the absence of a yield stress. obtained
from decoupled equations of heat and fluid flow. indi-
cate that the temperature distribution is not signifi-
cantly affected by the fluid flow effect, provided that
the rheological parameters are temperature inde-
pendent. It should be pointed out that for a shear
thinning fluid, the rheological effects on the viscosity
are velocity dependent; the viscosity is a mono-
tonically decreasing function of velocity. The fluid
velocity in an oil reservoir containing a non-
Newtonian fluid. produced under decompression. will
be extremely small. In these circumstances. the heat
transfer mechanism in a shear thinning fluid flowing
through a porous medium was found to be mainly by
conduction. From a fluid mechanics point of view. it
is intercsting to observe that relation (53). giving the
pressure front velocity, is identical to relation (43).
giving the fluid velocity at # = 0. except for the co-
cthicients.
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ECOULEMENT NON ISOTHERME D'UN FLUIDE NON NEWTONIEN A TRAVERS
UN MILIEU POREUX

Résumé—On considére les effets rhéologiques d'un fluide non newtonien sur quelques écoulements non
isothermes. Ces effets sont illustrés sur les distributions de température et de pression dans le cas d'un
fluide a loi puissance pour lequel la tension de cisaillement dépend de la température. Les solutions
permanentes pour |'écoulement radial sont obtenues analytiquement. On illustre graphiquement I'effet de
la température sur les distributions de pression. Les solutions variables sont obtenues pour un écoulement
monodimensionnel dans lequel le comportement non-newtonien est une simple loi puissance avec des
paramétres rhéologiques indépendants de la température. Ces solutions déterminent les distributions de
pression et de température quand les équations de base sont découplées et I'écoulement du fluide se produit
sous l'effet d'un mécanisme de décompression élastique d’une huile non newtonienne.
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NICHTISOTHERME STROMUNG EINES NICHT-NEWTONSCHEN FLUIDS DURCH
EIN POROSES MEDIUM

Zusammenfassung—Es wird die Frage der rheologischen Einfliisse eines nicht-newtonschen Fluids auf
nichtisotherme Stréomungen durch ein pordses Medium erértert. Diese Einfliisse werden anhand von
Temperatur- und Druckverteilungen fiir den Fall eines “power law”-Fluides mit temperaturabhingiger
FlieBspannung verdeutlicht. Die stationdren Lésungen der radialen Strdmungen werden auf analytischem
Weg ermittelt. Der TemperatureinfluB auf die Druckverteilung wird grafisch gezeigt. Weiterhin werden
instationdre Losungen fiir die eindimensionale Strdmung ermittelt, bei der sich das nicht-newtonsche
Verhalten auf den “power law™-Ansatz beschrinkt und die rheologischen Parameter temperatur-
unabhingig sind. Diese Losungen bestimmen die Druck- und Temperaturverteilungen, wenn die Grund-
gleichungen entkoppelt sind und die Strémung aus dem elastischen Dekompressions-Mechanismus
eines nicht-newtonschen Ols hervorgeht.

HEW30TEPMHYECKOE TEYEHWE HEHBIOTOHOBCKHUX XXHWIAKOCTEN YEPE3
MOPHUCTYIO CPEOQY

Ammoramms—Vccnenyercs BIAsSHAE peooruieckiX 3¢pexTos Ha HEH3OTEPMHYECKHE TCUEHHS HEHBIOTO-
HOBCKHX JXHIOKOCTel 4epe3 MOpHCTYIO cpeny. IIpHBe/ieHn pacnpene/icHHA TemmiepaTyp H JaBjeHHHA B
Cllydae CTENEHHOMH XHOKOCTH C NPEAeIbHBIM HANPSAKECHHEM CIBHIa, 3aBHCAUIAM OT TeMIepaTyphl. AHa-
JIMTHYECKH ONpEde/ieHBl CTALHOHADHbIE pellieHHs LIA panHaapHoro Tevenus. [padmueckn nokasamo
BJIHSHHE TEMNEPaTypLl HA pacnpeneicHns napicHHi. [TonyueHb Takke HECTALUMOHADHbLIE PELICHHS Ul
OIHOMEPHOTO TEYEHHH, NPH KOTOPOM MOBENCHHE HEHBLIOTOHOBCKOM XHIKOCTH ONPERCNNeTCs TOJILKO
CTEMEHHBIM 3aKOHOM, a PEOJIOTHYECKHE NMAapaMeTPhl He 3aBHCAT OT TEMNEPATyphl. JTH PELIEHHS MO3-
BOJISIOT HAHTH pacrpee/ieHHA AaBICHAR ¥ TEeMNEPATyp B ClyYae, KOrAa OCHOBHbIC yPaBHCHHA HE B3aH-
MOCBS3aHBl, @ TEYEHHE KHAKOCTH MPOHCXOAUT [0 MEXaHH3MY YIIPYroi JEKOMMPECCHH HEHbIOTOHOBCKOM
XHAKOCTH TUNa HeTH.





